
NASA-CR-203OSO

#_ • _v_ ¸

ISI Reprint Series

ISI/RS-93-418

April 1993

A Note on the Use of Timestamps 7/:- _/-_:4
as Nonces /

B. Clifford Neuman and Stuart G. Stubblebine

ISI/RS-93-418

April 1993

University of Southern California

Information Science Institute

4676 Admiralty Way, Marina del Rey, CA 90292-6695

310-822-1511

This reseatch was supported in part by the Advanced Research Projects Agency under NASA Cooperative

Agreement NCC-2-539. The views and conclusions contained in this paper are those of the authors and should not be

interpreted as representing the official policies, either expressed or implied, of ARPA or NASA.

Reprinted with permission from Operating Systems Review, 27(2): 10-14, April 1993.

A Note on the Use of Timestamps as Nonces

B. Clifford Neuman Stuart G. Stubblebine

Information Sciences Institute

University of Southern California

The use of timestamps in key distribution proto-

oak was suggested by Denning and Sacoa [DS81].
Timestarnps are now used in most production authen-

tication services including Kerberos [SNS88]. Con-

eerns have been raised about the security implica-
tions of this practice [Gon92]. Timestamps are nec-

es_Lry in authentication protocols that support mul-

tiple authentication without multiple requests to an
authentication server. Kehne, SchSnw_Ider, and Lan-

gendSrfer [KSL92] have proposed a nonce-based pro-

tooal for multiple authentications that they claim im-

proves upon the Kerberos protocol because it does not
depend on the presence of synchronized clocks.

This note discusses the use of timestamps as
nonces I and demonstrates a nonce-based mutual-

authentication protocol requiring only four messages,
one less than described in [KSL92], and the same num-

ber of messages required for mutual-authentication in

Kerberos. The note concludes by suggesting exten-
sions to our protocol that allow the use of verifier

issued timestamps as nonces while recovering some

(though not all) of the benefits of traditional times-

tamps.

1 Timestamp pros and cons

The design of an authentication system, as with any
system, requires that tradeoffs be made. When these

tradeoffs involve security, it is important that they be

fully understood. The debate about reliance on times-

tamps is beneficial since it clarifies these tradeoffs.

One consideration when designing an authentica-

tion service is reducing the number of messages needed
for authentication. The use of timestamps in Kerberos

allowed the elimination of one message from the pro-

tooal, and two if mutual authentication was not re-

quired. This is important when round trip latency
is an issue. The use of a timestamp as a nonce also

allows one-way authentication when communication

with the server is in one direction only.

Authors' address: University of Southern California, Informs.
tion Sciences L-mtitute, 4676 Admirs]ty Way, Marina del Rey,
California 90292. U.S.A. (ben@isi.edu, stubblebine@isi.edu)

_A nonce is am identifier that is used only once [NS78].

A second consideration in the design of Kerberos

was minimizing state at the end-server. By using

timestamps the need for per-connection state was
avoided. This was important because many of the

targeted applications used simple, stateless, request
response protocols. While it is still necessary for the

end-server to keep track of the timestamps seen within
the allowable clock-skew window, such state can be

maintained on a system wide basis and does not re-

quire the server to remain active while waiting for

subsequent messages. Additionally, the amount of po-

tential state can be reduced by narrowing the window.

A drawback of using a timestamp in place of a nonce

is the need for loosely synchronized clocks. Some
claim that synchronizing clocks in a secure manner

is difficult, yet Kerberos itself can be used to authen-

ticate the response from a timeserver since synchro-

nized clocks are only required when authenticating a
client to a server and not the reverse. In essence,
since a timeserver has little need to. authenticate its

clients, the timestamp in the request can be treated

as a client generated nonce. Further, since the clock
on the Kerberos server is returned at the time of the

initial request, it can be used to determine that the
time needs to be reset, or to record an offset to be

used for subsequent messages.

Gong [Gon92] discusses the difficulty of recovering
from a post-dated clock. If an authenticator is sent

before the clock is reset, that authenticator can be re-

played when the time incorrectly recorded in the au-
thenticator is reached. While of concern, we feel that

the likelihood of generating a post-dated authentica-
tor can be reduced if the time on the authentication

server (AS) is correct and the client carefully checks
its current time against that returned by the AS, tak-

ing appropriate action if a discrepancy is detected.
Further, in the unlikely event that an otherwise valid

post-dated authenticator is received, the end-server

can take an exception and record the timestamp in

non-volatile storage (e.g. disk) so that it would be
available across reboots _.

_Note that the window for post-dated authenticators is lim-
ited by the maximum lifetime of tickets for the server.

B. Clifford Neuman and Stuart G. Stubblebine. A Note on the Use of

Timsestamps as Nonces. Operating Systems Review, 27(2):10-14, April, 1993.

(1) A -. B: A, N.
(2) B -. K: B,{A,N.,T,)Kk,,Nb

(3) K --. A: {B, N., K.,, Ta}Kko, {A, If.,, T,)Kk,, Nb
(4) A ---, B: {A, K,,,T,}Kkb, {N,}K,,

Figure 1: The initial exchange

The above steps will be sufficient for most applica-

tions. Where stronger guarantees are needed, proto-
cols such as Version 5 of Kerberos provide mechanisms

whereby a server can require the use of a traditional

nonce (and the additional protocol messages needed

to use it). Note also that even without this option
the Kerberos protocol only uses timestamps to assure

the freshness of the initial message from the client to
the end-server. The protocol uses a more traditional

nonce to assure the freshness of the response from the
authentication server and for mutual authentication.

To summarize, use of timestamps in authentica-

tion protocols is beneficial in many situations, and

although it is important to understand their limita-

tions, their use as nonces does not necessarily reduce
the security of an authentication protocol.

2 A nonce-based protocol

Having discussed the pros and cons of timestamps,

let us consider a new protocol and some variations as
an exercise to better understand the benefits of the

alternatives. This protocol is a nonce-based protocol

for repeated mutual authentication requiring only four

messages initially and three messages for subsequent

authentication to a single server.

2.1 Initial authentication

The initial exchange of our protocol is similar to that
of Yahalom [Yah, BAN89], but extended to allow sub-

sequent reuse of the credentials issued to A. We also

do not require the secrecy of the nonce (Nb) in mes-

sages (2) and (3).

Our protocol begins with principal A initiating au-
thentication by sending a cleartext message (1) to E

containing A's name, together with a nonce generated
by A. B receives the message then sends message (2) tc

the authentication server (K) containing B's name, 8

nonce generated by B, and instructions to the KDC tc
issue credentials to A. These instructions specify A a_

the intended recipient of the credentials, a suggested

expiration time for the credentials, and the nonce re-
ceived from A. The instructions are encrypted in Kb_

the key registered for principal B with the KDC.

Upon receiving instructions from B, K decrypts the

instructions with Kbt, thus verifying that they were
issued by B at some point in the past (K does not care

about replays). K then issues a ticket allowing Atc

share a session key (Ksb) with B until the expiratior

time specified by B. In message (3), K sends the ticket

and B's nonce (Nb) to A together with the session ke)
K,6, B's identity, the expiration time specified by B

and the nonce originally generated by A (the last four
items encrypted in Kay, the key shared by the KDC

and A).

Upon receiving message (3), A decrypts that part
encrypted in K,k and verifies that the nonce Na is the

same as that included in message (1). If it matches A
is assured that K received the nonce from B encrypted

in Kb_. Further, A knows B's nonce !Nb) and can use
it to prove its identity to B.

Finally, in message (4), A forwards the ticket to E
together with B's nonce (N_) encrypted under the ses-

sion key from the ticket, thus proving to B the identit)
of A.

2.2 The ticket

As was the case in the protocol described in [KSL92]
execution of the protocol leaves A in possession of a

ticket that may be used for subsequent authenticatiol_

to B, avoiding the need to repeatedly contact the au-

thentication server. The ticket specifies a session ke)

to be used between A and B (K,b) and an indicatior_

of the time after which that key should no longer be

considered valid. Like the ticket in [KSL92], the tim_

in the ticket (in this case an expiration date) is rela-

tive to B's clock, and the time has been generalized tc
include an epoch, an identifier for the current strand

of time. If B's clock is set back, the epoch is changed

and any tickets not issued in the current epoch ar_
rejected.

Unlike the ticket in [KSL92], the current timestaml:

from B is not included. The expiration time is suf-
ficient since the ticket can not be used before it is

issued. A second, and perhaps more fundamental dif-

11

0') A --. B: N'., {A, Ko_,TdK.
(23 B --. A: NI, {N;}Ko_
(33 A --. B: {N_}Ko_

Figure 2: Subsequent authentication

ference between the ticket in [KSL92] and that in our

protocol is that in our protocol, the ticket is issued by

K and encrypted in the key shared by K and B, rather
than issued by B in a key known only to itself s

2.3 Subsequent authentication

At the end of the initial exchange, A is in possession

of a ticket and session key that may be used to com-

municate with B. A sends B the ticket, together with

s newly generated nonce (N_) with which B will au-
thenticate itself to A. Upon receipt of the message, B

decrypts the ticket, verifies that it has not expired, ex-

tracts the session key (/t'ob), then responds to A with
A's nonce (N, _) encrypted in the session key (Kab) to-

gether with a new nonce (N_) with which A will prove

its identity to B. A decrypts the message from B, veri-

ties N, t and is assured of B's identity. A then encrypts

N_ in the session key and returns it to B, thus proving
its identity to B.

3 Analysis

In this section, we discuss the importance of deriv-

ing formalized goals from functional objectives, and

hence, explain why our protocol achieves the same

functional objectives with fewer messages. We also
note an inconsistency between the description of the

earlier protocol for subsequent authentication [KSL92]

and the analysis using the logic of [BAN89].

3.1 Initial authentication

Designers who use logic in analyzing protocols fre-

quently fail to explicitly define the formalized goals

(i.e., final beliefs and sometimes possessions [GNY90])
of a protocol. Perhaps this failure to define formalized

goals is partly due to the subtle variability of func-

tional objectives in different protocols. For example,
one protocol may merely need to prove the presence of

one party to the other, while another must prove the

presence of each party to each other. As authentica-

tion often precedes future communication, protocols
may require unconfirmed or confirmed distribution of

s fresh session key to one or more communicants.

3Note that we could Allow B to generate the ticket and ses-

sion key (K.b) itself and send it to K l'or forwlu'ding to A, in

which case the ticket would be similar to that in [KSL92].

The failure to define formalized goals may also be

in part due to the lack of guidance on how formalized
goals are derived from functional objectives. Though

it is beyond the scope of'this note to adequately ad-
dress this issue, we point out that it is imperative

for designers to define the minimal set of formalized

goals from functional objectives when making state-
merits about the minimality of the number of messages

required to satisfy a functional objective.

An important distinction between our protocol and

that of [KSL92] is that we need only satisfy a reduced

set of formalized goals to achieve the functional ob-
jectives under the same assumptions. We reason that

the functional objectives of the initial protocol pro-

posed by Kehne et al. and that of Kerberos, is to (1)

prove the presence of A and B to each other, and (2)
for A to obtain a session key and ticket that can be

used for subsequent authentication.

We claim that the following set of formalized goals
supports these functional objectives 4:

A believes A _ B

A believes B believes Na

B believes A believes A _ B

In constrast with the formalized goals of the initial

protocol of [KSL92], we need not obtain the belief

A believes B believes A:,-_L B

to satisfy functional objectives (1) and (2) above.

3.2 Subsequent authentication

Our protocol for repeated authentication is similar to

that in the original paper [KSL92], however the beliefs
we obtain are weaker than those incorrectly obtained
therein.

The pitfalls of mapping an actual protocol to the

logic (i.e. idealization) [GKSG91] account for the in-

correct beliefs obtained in the original paper [KSL92].

The flaw in the original analysis stems from an in-
consistency between the protocol description and the

idealization of the protocol to obtain the following as-

sumption about the freshness of the timestamp:

B believes fresh Tb

Recall, a formula X is fresh when X has not been

sent in a message at any time before the current run

of the protocol [BAN89]. According to the protocol

4 When the secrecy of nonce Nb is maintained in messages

(2) and (3), the analysis of the initial protocol follows closely
with that of the strengthened version of the Yahalom Protocol

[BAN89] and for brevity is not included herein. Extensions to

the logic ot" [BANS9] are necessary to obtain these beliefs for

the initial protocol shown in Figure 1.

12

description, any Tb that has the current time iden-

tifier and lifetime that has not expired is considered
valid s. Thus the description of the state information

maintained by B is insufficient for B to determine the

freshness of Message I °. This precludes the applica-

tion of the nonce-verification rule of [BAN89] to ob-
tain:

B believes A _ B.

4 Verifier issued timestamps

We have shown a protocol for nonce-based repeated
authentication requiring four messages for initial au-

thentication. Like the protocol in [KSL92] the server

(B) must communicate with a third party (K) as part
of the initial exchange. This requires per-connection

state. Unfortunately, the need for per-connection

state can make it difficult to integrate an authenti-

cation protocol with applications that support a sim-
ple, stateless, request response protocol. With several

changes, however, we can reduce the required state to
that required by Kerberos without the need for syn-
chronized clocks.

To do this we apply the technique from [KSL92]

that allows timestamps without synchronized clocks,

hut in this case we use a timestamp (with epoch) gen-
erated by B as a nonce instead of the life of ticket.

The nonce will not be recorded for future comparison.

Instead, upon receipt of the nonce, B will check to

see that the epoch is current and that the timestamp

fails within the allowable window. Like Kerberos, the
server must keep track of timestamps seen within the

window but because the timestamp is based on the

local clock, that window can be very small (the max-

imum reasonable round trip time through K and A).

A similar modification can be made to the protocol

for subsequent authentication, but both messages 1'

and 3' will have to be accompanied by the ticket.

4.1 Epochs

Within an epoch s clock must increase monotonically.

If a clock is set back its epoch must change. Epochs

may be useful even when a timestamp is verified by

a separate party. For example an epoch associated

with the time on an authentication server can provide

sThls follows from the protocol description which states that

principal B mamages the time identifier and local clock and

verifies • ticket by testing the timestamp and local lifetime and

comparing the local time identifier with the one in the ticket.

a mechanism to quickly invalidate outstanding tickets
if the time on the authentication server has to be set

back.

5 Conclusion

In this note we discussed advantages and disadvan-
tages of using timestamps to prevent replay in au-

thentication protocols. We presented a four message

protocol for initial authentication that supports sub-

sequent authentication in three messages without con-
tacting the authentication server and without the use

of synchronized clocks. Where it is important to elim-

inate per-connection state on the server we suggested
a modification to our protocol that uses verifier issued

timestamps as nonces.

When designing an authentication protocol certain
tradeoffs must be made. It is important to understand
the issues in order to choose the best solution. Of the

protocols discussed, issues to be considered are per-
connection state on the server, the number of mes-

sages required, the presence of loosely-synchronized

clocks, and the ability to recover from a post-dated
clock.

Where the number of messages is the dominant

factor, perhaps due to round trip latency or the

need to fit the communication pattern of an exist-

ing application, the use of timestamps from loosely-

synchronized clocks is appropriate. Where recovery

from post-dated protocol messages is a dominant is-
sue, a timestamp or nonce issued by the verifier is

required. Where reduction of per-connection server

state is of concern the use ofa timestamp is the appro-

priate choice. Depending on other factors the times-
tamp can be issued either by the verifier or based on

loosely-synchronized clocks.

Number of Messages
Connection State

Random

Nonce

D

No Synch Clocks _-

Postdate Recovery -k

Timestamp

Verifier Synch

- ÷
+ -k
+

+

Acknowledgments

We would like to thank Martin Abadi, Celeste Ander-

son, Li Gong, Axel Kehne, Steve Lunt, and J uergen
Schoenwaelder for comments on a draft of this note.

13

[BAN89]

[DS81]

[GKSGg]]

[GNY90]

[Gon92]

[KSL92]

[s78]

[SNS88]

[Yah]

References

M. Burrows, M. Abadi, and R. Needham.

A logic for authentication. Technical Re-
port 39, Digital Equipment Corporation

Systems Research Center, March 1989.

Dorothy E. Denning and Giovanni Maria

Sacco. Timestarnps in key distribution

protocols. Communication of the A CM,

24(8):533-536, August 1981.

V. Gligor, R. Kailar, S. Stubblebine, and

L. Gong. Logics for cryptographic pro-
tocols - virtues and limitations. In Pro-

ceedings ofthe Computer SecurityFounda-

tions Workshop IV, pages 219-226, June
1991.

L. Gong, R. Needham, and R. Yahalom.

Reasoning about in cryptographic proto-

cols. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, May 1990.

Li Gong. A security risk of depending on
synchronized clocks. Operating Systems

Review, 26(1):49-53, January 1992.

A. Kehne, J. Schonwalder, and fl. Langen-
doffer. A nonce-based protocol for multi-

ple authentication. Operating Systems Re-

view, 26(4):84-89, October 1992.

Roger M. Needham and Michael D.
Schroeder. Using encryption for authen-

tication in large networks of computers.

Communication of the ACM, 21(12):993-
999, December 1978.

J. G. Steiner, B. C. Neuman, and J. I.
Schiller. Kerberos: An authentication ser-

vice for open network systems. In Pro.

ceedings of the Winter 1988 Useniz Con-
ference, pages 191-201, February 1988.

Raphael Yahalom. The shortest asyn-

chronous secure data exchange protocol.
Submitted for Publication.

14

